Hypothesis Tests Requiring Unbiased Estimators and Central Limit Theorem (From OCR 4733)

Q1, (Jan 2006, Q6)

H ₀ : $\mu = 32$; H ₁ : $\mu > 32$, where μ is population mean waist measurement $\overline{W} = 32.3$ $s^2 = 52214.50/50 - \overline{W}^2$ [= 1] $\hat{\sigma}^2 = 50/49 \times s^2$ [= 50/49 or 1.0204]	B1 B1 B1 M1 M1	One hypothesis correctly stated, $not x$ or \overline{x} or \overline{w} Both completely correct, μ used Sample mean 32.3 seen Correct formula for s^2 used Multiply by 50/49 or $\sqrt{}$
α : $z = (32.3 - 32) \times \sqrt{49}$	M1	Correct formula for z, can use s, aef, need $\mu = 32$
= 2.1	A1	$z = 2.1 \text{ or } 1 - \Phi(z) = 0.0179, not -2.1$
Compare 2.1 with 3.09	B1	Explicitly compare their 2.1 with 3.09(0) or their
or 0.0179 with 0.001		0.0179 with 0.001
β : CV = 32 + 3.09 ÷ $\sqrt{49}$	M1	$32 + z \times \sigma/\sqrt{n}$ [allow \pm , s, any z]
= 32.44	B1	$z = 3.09$ and (later) compare \bar{x}
Compare CV with 32.3	A1√	CV in range [32.4, 32.5], $\sqrt{\text{ on } k}$
Do not reject H ₀	M1√	Correct conclusion, can be implied, needs
		essentially correct method including \sqrt{n} ,
Insufficient evidence that waists are		any reasonable σ , but not from $\mu = 32.3$
actually larger	A1√	Interpreted in context
	10	•

Q2, (Jun 2008, Q3)

 •			
	$H_0: \mu = 28$	B2	Both hypotheses correctly stated; one error, allow
	$H_1: \mu \neq 28$		wrong or no letter, but not x or t or \bar{x} , B1
	$\sigma^2 = 37.05 \times 40/39$ [= 38]	M1	Multiply 37.05 or $\sqrt{37.05}$ by $n/(n-1)$ or $\sqrt{[n/(n-1)]}$
	26.44-28	M1	Standardise with \sqrt{n} , allow $\sqrt{\text{errors}}$, cc, +
α	$z = \frac{26.44 - 28}{\sqrt{38/40}} = -1.601$	A1	Correct z, a.r.t -1.60 , or $p \in [0.0547, 0.0548]$
	Compare -1.645, or 0.0547 with 0.05	B1	Explicit comparison of z with -1.645 or p with 0.05
β	Critical value $28 - z\sigma/\sqrt{n}$ [= 26.397]	M1	Allow "±", √ errors, cc, ignore other tail
	z = 1.645	B1	z = 1.645 in CV expression, and compare 26.44
	Compare 26.44 with 26.40	A1√	CV, $$ on their z, rounding to 3 SF correct
	Do not reject H ₀ [can be implied]	M1	Needs \sqrt{n} , correct method & comparison, <i>not</i> $\mu = 26.44$
	Insufficient evidence that time taken has	A1√ 8	Conclusion interpreted in context, $\sqrt{\text{ on } z}$,
	changed.		

Q3, (Jan 2009, Q7)

	<u>an 2005, Q7 j</u>			
(i)	$\hat{\mu} = \bar{t} = 13.7$	B1		13.7 stated
	12657.28	M1		Correct formula for biased estimate
	$\frac{12657.28}{64} - 13.7^{2} [=10.08]; \times \frac{64}{63}$	M1		$ imes rac{64}{63}$ used, or equivalent, can come in later
	= 10.24	A1		Variance or SD 10.24 or 10.2
	$H_0: \mu = 13.1, H_1: \mu > 13.1$	B2		Both correct.
	13.7 - 13.1 = 1.5 or $p = 0.0668$			[SR: One error, B1, but x or t or \bar{x} or \bar{t} , 0]
	$\frac{10.24/64}{\sqrt{10.24/64}}$ = 1.5 of p = 5.5555	M1		Standardise, or find CV, with √64 or 64
	•	A1		$z = \text{a.r.t. } 1.50, \text{ or } p = 0.0668, \text{ or CV } 13.758 \ [\sqrt{\text{ on } z}]$
	1.5 < 1.645 or 0.0668 > 0.05	B1		Compare $z \& 1.645$, or $p \& 0.05$ (must be correct tail),
				or $z = 1.645 \& 13$ with CV
	Do not reject H ₀ . Insufficient	M1		Correct comparison & conclusion, needs 64, not μ = 13.7
	evidence that time taken on	A1	11	Contextualised, some acknowledgement of uncertainty
	average is greater than 13.1 min			[13.1 – 13.7: (6), M1 A0 B1 M0]
(ii)	Yes, not told that dist is normal	B1	1	Equivalent statement, not "n is large", don't need "yes"

Q4, (Jan 2011, Q4)

(i)	Either $z = \frac{213.4 - 230}{45 / \sqrt{50}}$	M1	Standardise z with $\sqrt{50}$, ignore sign or $$ or squaring errors
	$45 / \sqrt{50}$ $= -2.608$ $-2.608 < -2.576 \text{ or } 0.0047 < 0.005$	A1 B1	z-value, a.r.t. –2.61, or p in range [0.0044, 0.005) Correctly compare (–)2.576, signs consistent, or p explicitly with 0.005
Or	CV is $230 - 2.576 \times \frac{45}{\sqrt{50}} = 213.6$	M1 B1	230 − $z\sigma/\sqrt{50}$, allow $$ or squaring errors, allow \pm but not just +; $z = 2.576$
	213.4 < 213.6	A1	Explicitly compare 213.4 with 213.6
	Reject H ₀ . Significant evidence	M1	"Reject", FT, needs correct method and form of
	that population mean is not 230	A1 FT 5	comparison; interpreted, acknowledge uncertainty
(ii)	Yes, population distribution is not	B2 2	Not, "yes, sample size is large" but ignore "can use it as"
	known to be normal		SR: Both right and wrong answers: B1
			α "Yes as it must be assumed normal": B1

Q5, (Jun 2011, Q6)

(i)	H_0 : $\mu = 24.3$; H_1 : $\mu \neq 24.3$	B1B1		Both: B2. 1 error, B1, but t, x etc: B0 SEE NOTES AT START AND END			
,,,	$\bar{t} = 26.28$	B1		26.28 seen or implied			
	50 [36602.17	M1		Correct formula for biased estimate [= 41.405]			
	$\hat{\sigma}^2 = \frac{50}{49} \left[\frac{36602.17}{50} - 26.28^2 \right]$	M1		Multiply by 50/49			
	_			[Single formula: M2, or give M1 if wrong but 49 divisor seen]			
	= 42.25	A1		42.25 or 6.5 seen or implied			
α	$z = \frac{26.28 - 24.3}{\sqrt{42.25/50}} = 2.154$	M1		Standardise their \bar{t} with 24.3, $\sqrt{50}$, allow sign/ $\sqrt{/cc}$ errors, their variance			
		A1		2.15(4) <i>or p</i> in range [0.0153, 0.0158], <i>not</i> –2.154 unless 0.015(6) subsequently used, <i>not</i> 1-tail			
	< 2.576	A1		Compare z with ± 2.576 , or $p > 0.005$, or $2p$ with 0.01, not from $\mu = 26.28$			
β	42.25	3.64					
P	CV $24.3 + 2.576 \times \sqrt{\frac{42.25}{50}}$	M1		24.3 + $zs/\sqrt{50}$, allow cc, $\sqrt{\text{errors}}$, allow \pm but not – only. Not 26.28 – $zs/\sqrt{50}$			
	, 55	A1		$z = 2.576$, not from $\mu = 26.28$ or 50 omitted, not from 1-tail			
	= 26.67 and 26.28 < 26.67	A1		Correct CV, ✓on z, and compare sample mean			
	Do not reject H ₀ . Insufficient evidence of a	M1		Conclusion, \checkmark , needs method, like-with-like, 50, not from $\mu = 26.28$, doesn't need correct z			
	change in maximum daily temperature.	A1 √ 1	1	Contextualised, recognise uncertainty, ✓on numbers			
L		l		NB: Clear evidence of μ = 26.28: can't get last 4 marks. See exemplars γ and δ			
(ii)	n is large	B1 1	1	This answer <i>only</i> or " $n >$ number" where number ≥ 29 , <i>not</i> both this and "distribution unknown".			
				But "n is large so we can approximate even though we don't know the distribution" is B1			
				"Possible as $n = 50$ " B0.			

Q6, (Jun 2012, Q5)

	H_0 : $\mu = 6.1$	B2	Both: B2. One error, B1, but \overline{x} , x , r etc: 0. 6.2: B0					
	H_1 : $\mu \neq 6.1$							
	$\hat{\mu} = \overline{x} = 6.2$	B1	6.2 [31/5] seen somewhere (other than hypotheses)					
	$\hat{\sigma}^2 = \frac{80}{79} \left(\frac{3126}{80} - 6.2^2 \right) = 0.643$	M1	Correct formula for biased estimate [0.635 or 127/200]	If single formula used, M2 or, if wrong, allow M1 for divisor 79 anywhere				
	79(80)	M1	Divide by 79 somewhere	,				
α:		A1	Variance estimate, a.r.t. 0.643, can be implied	[254/395 leading to 127/15800]				
	6.2 - 6.1 = 1.115	M1	Standardise their 6.2 with reasonable variance	80 needed, otherwise M0 and no more marks				
	$z = \frac{6.2 - 6.1}{\sqrt{0.643/80}} = 1.115$		attempt, needs 80, allow cc	If clearly $\mu = 6.2$ used, no more marks				
	$[1 - \Phi(1.115) = 0.1325 > 0.05]$	A1	$z \in [1.11, 1.12] \text{ (not -) or } p \in [0.1323, 0.1333]$	A1 uses number used for comparison				
	1.115 < 1.645	A1	Compare z with 1.645 (allow -1.645 if $z < 0$)	Withhold if inequality incorrect or if 1-tailed				
			or $p \ (< 0.5)$ with 0.05	Must be consistent signs/tails and like-with-				
]				like				
	CV 6.1 . 1.645 . 0.643	M1	$6.1 + z\sqrt{(\sigma^2/80)}$, allow \pm , $\sqrt{\text{errors}}$	Allow 6.2 – (or ±) but no more marks				
β:	$0.1 + 1.645 \times \sqrt{80}$	A1	CV, a.r.t. 6.25, needs $z = 1.645$, allow biased $\hat{\sigma}^2$	afterwards				
р.	CV $6.1 + 1.645 \times \sqrt{\frac{0.643}{80}}$ = 6.247 and 6.2 < 6.247	A1√	Compare 6.2 with CV from + sign, $\sqrt{\text{on }z}$	If no 79 earlier but used here, recovers M1A1				
			(but not σ)	E.g. $1.96 \rightarrow 6.276$ or $1.282 \rightarrow 6.215$ [gets				
			· · · · · · · · · · · · · · · · · · ·	M1A0A1				
	Do not reject H ₀ .	M1	Needs essentially correct method and comparison,	First conclusion wrong: M0A0 even if second				
	Insufficient evidence that pH		needs 80 but no need for correct variance	correct.				
	value is not 6.1	A1√	Needs context and "evidence" or equivalent, ft on	"1.115 > 1.645 so do not reject H ₀ " etc:				
		(44)	their z/p/CV	(A0)M1A1				
	Discribert and the P	[11]	- 1					
	Biased estimate used : typically		\bar{x} and μ interchanged: allow final M1A1 if <i>anywhere</i> right, but if always wrong (in hypotheses and z)					
	B2B1 M1M0A0 M1A0A1 M1A	11	M0A0. This would typically get B0B0B1 M1M1A1 M1A0A0 M0A0					
	[total 8] [total 5]							

Q7, (Jun 2014, Q7)

(i)	$\hat{\mu} = \overline{x} = 81$	B1	81 only, can be implied
	$\frac{329800}{50} - 81^2 \qquad [= 35]$	M1	Correct formula for biased estimate, their "81", can be implied
	$\times \frac{50}{49}$; = 35.71	M1	Multiply by 50/49. SC: single formula: M2, or M1 if wrong but divisor 49 anywhere [can be recovered if correctly done in part (ii)]
		A1	A.r.t. 35.7 – <u>can't</u> be recovered from part (ii). Can be implied
	$1 - \Phi\left(\frac{90 - 81}{\sqrt{35.71}}\right) = 1 - \Phi(1.506) = 1 - 0.9339$	M1	Standardise with their μ and σ , allow σ^2 , cc but not $\sqrt{50}$
	= 6.61% or 0.0661	A1	Answer, a.r.t. 6.6% or 0.066
		[6]	

(ii)	H_0 : $\mu = 80$	B2	Correct, B2. One error, e.g. wrong or no symbol, $>$, B1, but x or \bar{x} or t etc, or 81, B0.
(11)	$H_1: \mu \neq 80$	102	NB: If both hypotheses involve 81, <i>can't</i> get final M1
α:		M1	Standardise, with $\sqrt{50}$, allow $\sqrt{100}$, sign or cc errors, allow from biased variance
	$z = \frac{81 - 80}{\sqrt{35.71/50}} = 1.183$ [or $p = 0.1183$]	A1	z, a.r.t. 1.18, or p, a.r.t. 0.118. <u>Allow –1.18</u> .
	< 1.645	B1	Their $z < 1.645$ or $p > 0.05$, not if one-tail. Allow $-1.18 > -1.645$. Not just 1.645 seen.
ß:	CV $80 + 1.645\sqrt{\frac{35.71}{50}} = 81.39$	M1	$80 + zs/\sqrt{50}$, allow $\sqrt{\text{or cc errors}}$, ignore – (no marks for – alone);
ρ.	$\frac{1}{50} = 81.39$	B1	z = 1.645 used in this expression (not just seen), <i>not</i> from one-tail
	81 < 81.39	A1	Compare CV with 81, allow 81.08 from one-tailed ($z = 1.282$) (but not on their σ)
			SC: $81-1.645\sqrt{\frac{35.71}{50}}$: If H ₀ : $\mu = 80$: (B2) M1B1A0M0A0.
			If H_0 : $\mu = 81$: (B0) M1B1A1 (79.61) M0A0
	Do not reject H ₀ .	M1	Correct first conclusion, needs $\sqrt{50}$, correct comparison type, μ and \bar{x} not consistently
			wrong way round (thus H_0 : $\mu = 81$ can get B0 M1A1A1 M0A0, max 3/7)
			In method β , it needs to be clear that comparison involves \overline{x} .
	Insufficient evidence that the mean time is not	A1ft	Contextualised (mention "time"), acknowledge uncertainty ("evidence that")
	80 minutes.		Not "significant evidence that mean time is 80"
			FT on wrong z-value or wrong critical value if previous mark gained
		[7]	SC: One-tailed: can get B1B0 M1A1B0 M1A1, max 5/7
			No √50: can get B2 M0 B1 M0, max 3/7
(iii)	(a) Yes (single observation only)	B1 B1	No reason needed, but withhold if wrong reason seen. Allow "yes, no dist" given"
	(b) No, CLT applies to large sample		"No" and refer to central limit theorem or "large sample"
		[2]	{note for scoris zoning – (a) and (b) to be in single zone}

Q8, (Jun 2015, Q6)

(i)	$ \bar{t} = 11.76 $ $ \hat{\sigma}^2 = \frac{120}{119} \left(\frac{18737.712}{120} \right) $ $ H_0: \mu = 11.0, H_1: \mu \neq 1 $ $ \alpha: z = \frac{11.76 - 11.0}{\sqrt{18/120}} $ $ > 1. $	1.0 B2		11.76 seen or implied Biased estimate (= 17.85) $\times 120/119$, or single formula with 119 divisor Answer 18 ± 0.05 One error, B1, but \bar{t} , t , x etc: B0 (u : B1) Standardise with 120, ignore cc or $$ errors A.r.t. (\pm)1.96 or $p \in [0.0245, 0.025]$ www Compare explicitly with (\pm)1.645 or 0.05, consistent with their z or p . [Needs to be "next to" TS]	i.e. correct single formula gets M2 If both hypotheses involve 11.76, only further mark possible is next M1 [max 5/11] 120 omitted gets no further marks [max 6/11] Ignore "N(11.76,)" unless hypotheses omitted altogether, in which case treat as hypotheses in terms of 11.76	
	β: CV 11.0 ± 1.645 = 11.637 (or 10.1 11.76 > 11.64			11.0 + $z\sigma$ /√120, needs 120 and + or ± Ignore 10.363 Explicit comparison, consistent tail	If 11.76 − zσ/√120, give M1A0A0 M0A0 (even if correct hypotheses)	
	Reject H ₀ . Significant of average time has change		ft	Correct first conclusion, allow "Accept H ₁ " Contextualised, acknowledge uncertainly, FT on wrong CR/z/p	Needs correct method (including 120) and comparison type, 11.0 in at least one hypothesis Allow "increase" instead of "change"	
(ii)	No, the Central Limit	Theorem applies B1	1	or "No, large sample". Withhold if extra wrong or irrelevant reason(s) given	Needs both "no" and reason	

Q9, (Jun 2016, Q8)

(i)	H_0 : $\mu = 13.3$, H_1 : $\mu < 13.3$	B2		Both correct: B2. One error [e.g. p , \neq , no symbol] B1, but x , \overline{x} etc B0
α.	$z = \frac{12.48 - 13.3}{\sqrt{12.25/50}} = -1.6566 [p = 0.0488]$	M1		Standardise with $\sqrt{50}$, allow $\sqrt{\text{errors}}$, allow cc, allow 13.3 – 12.48
u.	$\frac{1}{\sqrt{12.25/50}}$	A1		z in range [-1.66, -1.65], or p in range [0.04875, 0.0489], allow 0.9512 only
				if consistent
	[12.25/50 = 0.245] < -1.645 $[p < 0.05]$	B1		Compare with -1.645 , allow $+1.6566$ with $+1.645$, or p with $0.05/0.95$ as
				consistent
g.	(2.25)	M1		13.3 − $z\sigma/\sqrt{50}$, any recognisable z, allow $\sqrt{\text{errors etc, ignore } 13.3 +}$
р.	CV $13.3 - 1.645\sqrt{\frac{12.25}{50}} = 12.4857$	B1		z = 1.645
	12.48 < CV	A1		Compare 12.49 (or better) with 12.48, ignore 13.3 +
	12.46 4 6 7			SC: 2-tailed, 12.33 gets B1B0 M1B0A1ft M1A1
	Reject H ₀ .	M1		Consistent, needs √50, like-with-like comparison, hypotheses <i>not</i> 12.48
	Significant evidence that animals in zoos have	Alft	7	Contextualised, acknowledge uncertainty, their z
	shorter expected lifetime			SC1: 2-tailed: can get B1 M1A1B0 M1A1 max 5/7
				SC2: No √50: can get B2 M0A0 B1 M0 max 3/7
				SC3: \bar{x} and μ confused consistently: can get B0 M1A1 B1 M0
				SC4: 50/49 used in (i): can get B2 M1A0B1 M1A1 (6) in (i), M1 in (ii)
(ii)	$\hat{\sigma}^2 = \frac{50}{49} \times 12.25 \qquad [= 12.5]$	M1		Multiply 12.25 by 50/49, allow √ etc, allow if done in part (i) but then 0
	.,	M1		Standardise with √50
	$z = \frac{12.48 - 13.3}{\sqrt{12.5/50}} = -1.64 \qquad [p = 0.0505]$	A1		Obtain a.r.t1.64, allow +1.64 if consistent with (i).
	>-1.645 [$p > 0.05$]	B1		Compare with same CV as in (i)
	Opposite conclusion	A1ft	5	State opposite conclusion (ft), any form, allow \bar{x}/μ here, needs M1M1
	11			Identical mark scheme for method β, CV 12.4775
				SC1: 50 omitted consistently in both: M1M0A0B1A1 max 3/5
				SC2: no $\sqrt{50}$ in (i), $\sqrt{50}$ but not 50/49 in (ii): M0M1A0B1A1 max 3/5
(iii)	Yes as population not known to be normal	B1	1	Not "n large" unless "Yes, not known normal, but n large so can use"
				No wrong extras, e.g. "depends on whether it's sample or population"